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ABSTRACT
Previous research has identified trade-offs when it comes to
designing visualization tools. While constructive “bottom-
up” tools promote a hands-on, user-driven design process
that enables a deep understanding and control of the visual
mapping, automated tools are more efficient and allow people
to rapidly explore complex alternative designs, often at the cost
of transparency. We investigate how to design visualization
tools that support a user-driven, transparent design process
while enabling efficiency and automation, through a series of
design workshops that looked at how both visualization experts
and novices approach this problem. Participants produced a
variety of solutions that range from example-based approaches
expanding constructive visualization to solutions in which the
visualization tool infers solutions on behalf of the designer,
e.g., based on data attributes. On a higher level, these findings
highlight agency and granularity as dimensions that can guide
the design of visualization tools in this space.
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INTRODUCTION
An increasing number of tools support visualization construc-
tion without requiring programming skills or design expertise
from the users’ end. This enables a larger proportion of the
population to take advantage of visualization, from students
and other learners, to researchers who are non-experts in vi-
sualization. Many modern commercial visualization tools,
such as Tableau or MS Excel, allow the rapid creation of so-
phisticated visualizations and, sometimes, encourage better
visualization choices. For example, Tableau makes sugges-
tions of specific visualization types based on the selected data
attributes (e.g., a bar chart, which is known to be perceptually
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efficient for displaying groups of scale quantities). As visual-
ization tools become more sophisticated, they tend to make
more choices and actions on behalf of the designer. In some
extremes the tool can generate a visualization from provided
data with minimal or no human intervention [25].
Somewhat in opposition to these tools stands the subarea of
constructive visualization [28, 30, 32], which is based on
educational theories [1, 51, 52]. Constructive visualization
promotes a more hands-on, even manual approach to visual-
ization for a better understanding of its principles and values.
Some existing evidence shows that requiring more effort from
the designer has advantages in terms of learning and under-
standing [30], as well as an increased feeling of authorship
and transparency [44]. However, the fundamental limitation
of these constructive tools (e.g., [45], and their physical coun-
terparts [6, 29, 32]) is that they do not scale to larger datasets
and can be tedious and repetitive to use [44].
In this paper we investigate how to reconcile automation and
computer-assisted design with the benefits of constructive vi-
sualization. To gain an understanding of this design space
we conducted an iterative in-house design process as well as
a series of design workshops with people of different back-
grounds and expertise levels. Based on our detailed analysis
of resulting solutions, also in the light of existing tools, we
describe possible ways to design visualization tools that retain
the advantages of both worlds. Our paper contributes: (1) a
conceptualization of the problem of designing more automated
constructive visualization tools, (2) a catalog of categorized
design examples, (3) a characterization of this design space in
terms of agency and granularity, and (4) a discussion on the
implications for designing better visualization tools.

RELATED WORK
Our research draws on previous design approaches to visu-
alization tools, including constructive visualization, and the
concepts of automation, agency, and abstraction in relation to
designing visualization tools as described below.
Visualization Tools: Types and Approaches
Visualization tools can be categorized in different ways [39,
43, 50, 67]. For example, Grammel et al. [19] classify tools
based on their user interface, labeling Tableau [62] as a “shelf
configuration” tool in reference to how it presents and enables
interaction with visual properties and data attributes. Other
tools provide visual programming environments in which
designers visualize data by manipulating graphical objects.
DataMeadow [14], ExPlates [34], and iVoLVER [45] are ex-
amples of this group. In these tools the visualization process
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takes place within a canvas where graphical elements of dif-
ferent types process and exchange data through connections.
Such tools do not require textual programming skills as op-
posed to specialized languages and libraries (e.g., D3 [7]).
Méndez et al. [44] discuss approaches supported by visu-
alization tools as a continuum between two ends: bottom-
up and top-down. The former, represented by tools such as
iVoLVER [45], promote a hands-on, constructive visualization
process [28, 30, 32], but are limited in terms of scalability.
The latter (e.g., Tableau) allow rapid design at the cost of trans-
parency. Aiming to marry the benefits of both approaches, we
investigate design strategies that support the visualization of
large datasets while maintaining a constructive, transparent,
and largely user-controlled visualization process.

Automation and Agency
In visualization tools, automation facilitates visual mapping
of large datasets enabling designers to rapidly explore differ-
ent visual representations [44]. Many existing tools feature
recommendation modules that suggest designs as users ma-
nipulate data elements (e.g., Tableau’s “Show Me” [40] and
similar strategies in other tools [8, 18, 56, 58, 72]). In general,
automation is meant to ease tasks that would be otherwise un-
necessarily difficult, repetitive, or tedious. However, research
from psychology and cognitive sciences has shown that too
much automation may lead to complacency and bias [54, 53].
Relying on the computer, people are less likely to reflect on
how automated routines act on their behalf [13]. Furthermore,
people often give more weight to the computer’s decisions
even in the presence of contradicting evidence [10].
In digital tools, excessive automation can also affect how
people perceive agency. Agency “refers to a person’s ability to
control their actions and, through them, events in the external
world.” [20, p. 242]. The experience of agency is an important
aspect of HCI research because users “strongly desire the
sense that they are in charge of the system and that the system
responds to their actions.” [59, p. 75]. As shown by Coyle
et al. [12], too much computer assistance can harm people’s
sense of agency in a point-and-click task.
The InfoVis community has also paid attention to agency.
People experience different levels of control and authorship
of the visualization design process when working with tools
that implement opposite levels of automation [44]. Tori and
Möller’s taxonomy emphasizes the human aspect of visual-
ization techniques by considering “how much the designer
chooses display attributes” [69, p. 154]. Koytek et al. showed
that incorporating personal agency into brushing and linking
interaction [37] can increase the transparency of a visualization
tool. To better preserve people’s sense of agency while exploit-
ing computational power, other works combine automation
and human involvement (e.g., [4, 47, 55]). Along these lines,
Yu and Blackwell investigated the role of timing on people’s
perception of agency in mixed-initiative interaction [73].

Abstraction
To cope with datasets of different types and scales, visualiza-
tion tools often create abstractions of the data and visual map-
ping processes. While constructive visualization approaches
have a low level of abstraction (as values are directly mapped

to visual elements), most commercial tools implement higher
levels of abstraction on a data, visual, or interaction level. Ab-
straction is a cognitive process that plays an important role in
human language and thought [24, p. 184]. It is a complex term
discussed across many areas of study such as philosophy [57],
psychology [16, 60] and mathematics [21]. It is used in engi-
neering to cope with complexity [36], although it necessarily
implies hiding of detail. In the remainder of this paper we
will refer to one specific type of abstraction—generalization
abstraction—which we define narrowly as the ability to refer
to a set of items with a symbol. For example, when dealing
with data, the name of a column becomes an abstraction of
all the values contained in that column. Abstraction can also
be recursive: we can abstract a group of abstractions (e.g., re-
ferring to the Name, Surname, and Age columns as the Person
data table increases abstraction). Our definition of abstrac-
tion is related to encapsulation in Software Engineering and
Object-oriented Programming [61], and it has been discussed
in the context of visualizing algorithms [46].

GOALS AND METHODOLOGY
Our research aims at bringing together the benefits of bottom-
up and top-down approaches to visualization tools. This is
a difficult challenge as the advantages of bottom-up visual-
ization tools—a deep involvement and understanding of the
visualization process—seem to be incompatible with the ben-
efits of top-down visualization tools: the quick and easy vi-
sualization, even of large datasets, made possible through
automation [44]. To investigate possible solutions to this chal-
lenge in-depth and from multiple perspectives, we followed a
mixed design methodology driven by: (1) our own expertise as
visualization researchers with significant experience in design-
ing visualization tools and UIs, and (2) the ideas from a larger
group of people with varying degrees of expertise in visual-
ization and visualization tools, who took part in four design
workshops we organized. In the search of design approaches
to visualization tools that would be suitable not only to experts
but also to visualization novices, we found the involvement
of a larger group of people with different backgrounds to be
important. The constructive visualization tool iVoLVER [45]
provided a starting point for our explorations, which focused
on revising its design to make it suitable for visualizing larger
datasets while maintaining transparency and user-involvement
in the visualization process. In the following we first discuss
the in-house design solutions that we came up with as experts
in visualization tool design. This is followed by a discussion
of the design workshops and the solutions proposed by the
workshop participants.

IN-HOUSE DESIGN SOLUTIONS
To explore solutions to the problem of visualizing large-scale
datasets in the constructive tool iVoLVER, two of the authors
of this work engaged in an iterative design process. We aimed
at finding a “sweet spot” between the two ends of the bottom-
up vs. top-down continuum [44], balancing their trade-offs
from an expert perspective. This process consisted of four
meetings of about 1.5 hours each in which we developed and
incrementally refined a large number of initial paper sketches
At the end we consolidated the designs into three representa-
tive in-house solutions:
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Figure 1: In-house Macro Recorder.

Macro Recorder: In this solution, users specify visual map-
pings by connecting individual values of the dataset (i.e., cells
of the data table) to a mark’s visual properties while an ad-
ditional interface element, the Macro Recorder, registers the
history of manual actions throughout the visualization process
(Fig. 1, left). The recording is activated upon request. When
finished it allows the selection of (1) a subset of the performed
actions and (2) a set of data (i.e., rows of the dataset) to which
the selected actions will be applied (Fig. 1, middle). This
generalization step results in a set of new marks that represent
the selected data according to the mappings specified by the
actions on the initial mark (Fig. 1, right).
This design is based on the concept of demonstrational inter-
faces that “let the user perform actions on concrete example
objects [...] while constructing an abstract program” [48,
p. 61]. It preserves iVoLVER’s bottom-up approach as it
allows people to drive the visualization design process by
specifying mappings at the level of individual data values and
marks. The recording feature allows for generalization and, in
this way, resolves the problem of having to repeat individual
interaction steps, one of iVoLVER’s main drawbacks [44, 45].

Smart Assistant: This solution proposes a visualization pro-
cess based on a mixed-initiative interaction approach [2]. Vi-
sual mappings are specified based on a single mark and data
value. The system monitors the designer’s mapping actions
and provides guidance on how to proceed in further stages of
the visualization construction process. As this Smart Assis-
tant detects a new mark or modification of a visual property,
it infers how the mapping applies to other data and shows
previews of the corresponding visualization based on all data
values (Fig. 2, left). The user can accept or reject these sug-
gestions, or explore alternatives (Fig. 2, middle & right).

Proxy Mark Widget: In this solution mappings are specified
not directly on marks, but through a widget which acts as a
proxy for a group of marks and provides access to their visual
properties. Users specify visual mappings by feeding sets of
data values to the widget’s graphical representations of visual
properties (see Fig. 3.1) . These sets can contain either all the
values associated to a data attribute or just some parts. In our
design, the former are available through the column headers
of the data table while the latter can be manually constructed
with a vertical dragging gesture that spans across the desired

values. Once all the data mappings have been specified, an
output port in the widget allows users to drag the resulting
visualization to the canvas (see Fig. 3.2 & 3.3).
This solution is similar to Tableau’s “Marks Card” [65], with
the important difference that the user is in full control of the
visual properties of marks, including their position on the
canvas which can be defined explicitly, rather than implicitly
as in Tableau through the “Columns and Rows” shelves [63].

DESIGN WORKSHOPS
We conducted four design workshops to expand and validate
our ideas on how to facilitate the visualization of large-scale
datasets in iVoLVER. We deliberately chose participants from
a range of backgrounds and expertise to engage with the prob-
lem for half a day in groups of 3–4. Since the expert perspec-
tive is already represented (see above), we wanted to encour-
age solutions from other fields, beyond experts’ perspectives
on current tools and beyond the state of the art. To provide
participants with some background and to expose them to con-
trasting visualization authoring approaches, they first worked
with Tableau and iVoLVER (two extremes in the space be-
tween top-down and bottom-up visualization approaches [44]),
before they sketched and discussed their own design ideas.

Participants
We recruited 14 participants from a local university (8 female,
19–49 years old; median 26) ; 12 were undergraduate or grad-
uate students in computer science, mathematics, English liter-
ature, or museum studies; one was a research communication
practitioner, and one a lecturer in economics.
Expertise in visualization varied from no knowledge (n=1),
web or print from a consumer perspective (n=7), awareness of
concepts without practical experience (n=3), and visualization
practitioners with at least one year experience (n=3).
Participants’ experience with visualization tools and interface
design varied. Six did not know about Tableau; three had heard
of it. Four had used it once, and one was comfortable with it
but not proficient. Five participants did not know iVoLVER;
five had heard of it. One had used it once, and three were
comfortable with it, but not proficient. Four participants had
no experience with designing UIs. Nine had varied levels of
expertise, ranging from novices (n=1), to basic knowledge
from university projects (n=4), to practitioners with at least
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Figure 2: In-house Smart Assistant.

one year of experience (n=4; their experience ranged from
designing touch interfaces, UIs for domain specialists, and
visualization-based interfaces including Tableau dashboards.)

Procedure
Each workshop session consisted of the following phases (see
supplementary material for data and workshop material):
Introduction to Visualization Concepts. After filling out a
questionnaire about their background, participants watched a
4-minute video1 explaining the concepts of marks and visual
variables and their relevance to visualizing data. Participants
kept a printed summary of the video to have at hand during
the subsequent tasks. This stage ensured that all participants
had a minimum knowledge of basic visualization concepts.
Tool Introduction. A 20-minute session consisted of a
live demonstration, introducing participants to the first tool
(iVoLVER or Tableau). This included an overview of its in-
terface features, a demonstration of how it implements the
visualization concepts, and how to map data to visuals and cre-
ate visualizations based on a small dataset. Participants were
given a printed “tool cheatsheet” to facilitate the subsequent
visualization tasks.
Visualization Task. Participants received one of two datasets
and corresponding tasks to complete using the tool at hand.
The tool order was counterbalanced across groups; dataset
order was counterbalanced across participants within a group.
1Available at http://ivolver.cs.st-andrews.ac.uk/scalability
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Figure 3: In-house Proxy Mark Widget.

Each dataset (one about oil production, one about movies,
both used also in [44]) consisted of five data points and five
attributes. The tasks included the creation of three different
visualizations involving different data attributes. The tasks
for both datasets were equivalent in the type and number of
involved attributes. Participants had 30 minutes to complete
the tasks using a laptop computer with their preferred input
method (e.g., mouse, touchpad). After this, they were intro-
duced to the second tool and completed the visualization tasks
using this tool with the second dataset.
Group Discussion on Tools. The workshop attendees briefly
discussed their overall experience with Tableau and iVoLVER,
including differences, advantages and limitations.
Design Briefing. These hands-on visualization sessions were
followed by a briefing highlighting the main goals for the
sketching session: To revise iVoLVER as a constructive visu-
alization tool that would (1) scale to large datasets, (2) support
a speedy visualization process, and (3) avoid repetitive interac-
tion steps; all while still supporting transparency and keeping
the user in charge of the design decisions.
Sketching Session. Participants then spent approx. 45 minutes
sketching design solutions that would meet these goals. They
were advised to revising iVoLVER by either modifying its cur-
rent features or creating new ones. Participants were provided
a sketching toolkit that, among other materials, contained sev-
eral printed cutouts of a sample dataset (different from the data
used in the visualization exercise) that they could glue to A3
sketching sheets as a starting point for sketching a new idea
and as a common ground to discuss all participants’ solutions
later in the workshop. The dataset representations came in
small (five records/rows) and large (36 records) versions.
Presentation of Sketches. Participants presented their
sketched solutions to the group, explaining their ideas toward
a better constructive visualization tool.
Participants did not collaborate at any point during the work-
shop session. The workshops ended with us presenting our
in-house design solutions leading into a concluding discussion
of the ideas that had come up in the workshop.

Data Collection & Analysis
Participants’ presentations of sketches were video-recorded
(98 min. in total), and we collected all produced sketches
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(a) Displaying [P8]. (b) Formatting [P4]. (c) Formatting [P5]. (d) Setting the data type [P2]. (e) Sorting/filtering [P5]. (f) Rearranging [P3].

Figure 4: Designs that address data-related aspects of the visualization construction process .

(41 pages). This data forms the basis for our findings. One
of the authors of this work (the facilitator of the workshops)
analyzed the video data following a video coding process
as proposed by Heath et al. [22]. Observational notes taken
throughout the workshops informed this process. Initial coding
focused on the visualization stages as addressed by partici-
pants and how they envisioned particular features and their
implementation. This was followed by grouping these initial
codes to classify the different design solutions based on sim-
ilarities and higher-level design strategies. All three authors
participated in this grouping of codes.

RESULTS
Participants’ approaches to the introductory visualization
tasks confirm observations of previous research that com-
pared bottom-up versus top-down visualization authoring us-
ing iVoLVER and Tableau [44]: participants explored more
alternative designs when working with Tableau, and produced
a more varied set of visualizations when working in iVoLVER2.
Along the same lines, the group discussions focused on the
trade-offs of the two tools’ approaches, namely the speed of
construction and automation (Tableau) and the transparency
and flexibility of the visualization process (iVoLVER). This
validates the setup of the workshops and the understanding of
the problem in preparation for the sketching session.

Categorizing the participants’ sketches, we found that these
address three aspects of the visualization process as described
below: (1) data preparation (e.g., formatting, sorting, filtering),
(2) interactions with the data (e.g., grouping, creating data
subsets), and (3) visual mappings specification. Note that some
sketches are annotated in yellow for better comprehension.

Data Preparation Support
Six sketches (all produced by participants with a computer
science background) included solutions to pre-process the data
before starting the actual visualization process. Participants
with non-technical backgrounds simply assumed that the tool
would recognize the data’s structure automatically.
Most of these designs extract and format the data from the table
to reflect the relationships between values and attributes. For
example, P8 proposed an automatic approach where the tool
generates a “data breakdown” pane which organizes the data
according to attribute types (see Fig. 4a), resembling Tableau’s
Data Pane [64] in appearance and functionality. Other partici-
pants proposed a more manual approach for data configuration
and extraction. For example, P4 designed a widget to extract
2The produced visualizations and complete set of design sketches
are available at http://ivolver.cs.st-andrews.ac.uk/scalability

and format the values from an attribute’s column (Fig. 4b)
which also allows other specifications (e.g., the number of
values to extract). P5 proposed a similar element that extracts
and formats values also across columns (Fig. 4c), P2 designed
a widget to set the data type of each attribute (Fig. 4d). Other
participants designed configurable canvas elements to filter
and sort data (Fig. 4e) and to rearrange the individual values
of an attribute (Fig. 4f).

Interactions with the Data
Although some design ideas required interaction with indi-
vidual data values, most participants proposed manipulating
several values at a time, highlighting that working with indi-
vidual values makes the process tedious: “Both of my ideas
are targeted towards improving efficiency, because I found that
[in iVoLVER] some of the tasks were quite tedious. Especially
since it’s all geared towards single values.” [P8].
11/14 participants proposed accessing all values of an at-
tribute by interacting with the column headers of the data table
(Fig. 5a): “We want to go from creating data bindings between
a single value to some property of an object [a mark]. And
we want to go from that to potentially manipulating thousands
of objects [marks] at the same time. So, the natural thing to
do is to consider the headings, the column headings for the
data that we have.” [P7]. The creation of value subsets of an
attribute was commonly supported, for example, via dragging
gestures to select the values of interest (Fig 5b). Similar to the
selection of nonadjacent cells in MS Excel, P13 proposed to

“select multiple parts of your data [...] via drag-and-drop or
‘control plus click’”.

Specifying Visual Mappings
17 design ideas presented by participants focused on how to
specify mappings between data and visual properties. We
categorized these into eight groups representing unique ideas.

Mapping Replication
P6 proposed an idea that directly builds on iVoLVER’s stan-
dard way of mapping data to visuals, but replicates this map-

(a) With column headers [P3]. (b) Direct selection [P12].

Figure 5: Interactions with data table (shown with cursor annotation).
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ping process to multiple values and/or attributes. As shown
in Figure 6a, a data value Charles has been dragged into
the label property of a circular mark, creating a visible link
(the visual properties of the mark are not displayed in the
sketch). The same is done to a quantitative value of the
Salary attribute, linked to the mark’s radius. Finally, a value
of Supplies is converted to color through an additional widget
before being mapped to the mark’s color property. Now that
the first visual mapping step is completed, the user can press
the “plus” popup button to replicate the same process using
other data records by selecting rows in the table (Fig. 6b).

Macro Recorder
P13’s idea was to “record macros to automate actions” as
described in his presentation: “You would get one mark and
say ‘I want to take the country’s name for the label, and I
want to take the height of the bar—if it’s a rectangle—for the
population of that country’. And you would kind of record
your actions. Not as literal ‘go to this part of the screen with
the mouse cursor and click here’, but just to say ‘now rinse,
repeat, wax on, wax off’ all the way down the table, reapplying
the same set of actions as I have.”

Propagation of Individual Mapping Steps
P10’s approach (verbally presented) allows users to connect
individual data values to visual properties and propagate the
underlying mapping to other existing marks on the canvas via
a gesture that takes into account the values’ and marks’ spatial
arrangement in the data table and canvas. For example, after
connecting a Salary value V to the height of a rectangular
mark M, swiping right on the canvas would modify the height
of all marks located to the right of M with values from Salary
that are located below V in the data table. Swiping left would
apply the values above V to the marks to the left of M.

Bulk Modification of Mark Properties
P2 proposed a selection tool to group marks in the visual-
ization canvas: Figure 7a shows a sketch where four marks
(highlighted in green) have been grouped. Users can access
the visual properties of a mark and connect individual data
values to it, which directly affects the other marks: “If you
change [a visual property] for one thing [mark] in that group,
that [property] changes in the same way for all of them.” [P2].
This operation can make use of actual data, but it can also fa-
cilitate changing a particular visual property across all marks:

“It’s not intended for large datasets where the attributes need to
be different for every one. It’s intended for, like, if you wanna
change the color of several marks at the same time.” [P2].

(a) Setting properties of a mark. (b) Replicated mappings.

Figure 6: The plus popup button [P6].

P11 proposed an idea that also involves a group selection tool
(Fig. 7b). Here, the tool automatically associates a widget to
any user-created group of marks. Double-clicking a group
evokes this widget which provides access to the marks’ visual
properties. Sets of data values can be connected to each of
these properties. When receiving a new data link, the corre-
sponding property of each mark within a group changes.

Collective Proxy Objects
Five participants (P2, 5, 6, 7, and 12) proposed specifying
the mappings of several marks using a single graphical ob-
ject (Fig. 8). The circular object in Figure 8a, for example,
is not a mark, but a widget that provides a list of four visual
properties. The sketch shows the data attributes Name, Salary,
and Service connected to the widget’s label, height and
width visual properties. The widget eventually generates the
visualization by instantiating a group of marks representing
the specified mappings. We refer to these designs as collective
proxy objects as they support a visualization process that in-
volves an object that acts as a proxy for a collection of marks.
Participants’ ideas differed in the following aspects:
a) Shape Property. Three participants sketched ideas where
the visual appearance of the proxy object determines the shape
of the marks it generates. For example, a rectangular proxy
object creates a bar chart like visualization (e.g., Fig. 8b). P2
and P6’s ideas (Fig. 8a and 8c) are also based on a predefined
shape property. To overcome the inherent limitation of this
solution that only allows the construction of visualizations
whose marks have the same shape, P7 proposed a shapeless
proxy object with an additional shape property to be specified
for each mark independently. P12 proposed a similar idea (see
Fig. 8e; here, this property is called “mark”).
b) Time & Space of Rendering. Four proposed ideas require
the user to explicitly trigger the generation of the visualization
once the visual mappings are configured. For example, in
P2’s design (Fig. 8a), this is done via the button located at the
bottom-right of the circular proxy object. Other participants
proposed using drag-and-drop gestures from the proxy object
onto the canvas. Only one participant proposed a design that
does not require a rendering step but allows changes on marks
to take place in real time, as data is connected to the proxy
object’s visual properties. As shown in Figure 8d (left) marks
(the three black rectangles) reside within the proxy object itself,
which also acts as a container for the resulting visualization.
c) Position Mappings. The proxy objects of four participants
lack location properties; they implement position mappings
as in iVoLVER: by linking marks to an external positioner
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Figure 7: Bulk assignation of grouped marks’ properties.
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Figure 8: Designs that specify visual mappings through a proxy object. The yellow highlighting shows the proxy’s properties where data is connected.

widget. In contrast, P7 incorporated the positioner widget
within his proxy object design (Fig. 8d, right).

Axis-based Solutions
Three participants proposed widgets that include axes as a
fundamental component to enable the specification of position
mappings when sets of quantitative values are connected to the
widget’s axes (Fig. 9). When the connected data contains cate-
gorical values, the widget applies heuristics to determine other
types of visual encodings. For example, when connecting a set
of quantitative values to one axis and a set of categorical val-
ues to the other, the widget generates a bar chart. The widget
therefore decides on the marks that compose the visualization,
i.e., the data input and the order in which it is connected deter-
mines the type and layout of the resulting visualization. This
idea is comparable to Tableau’s “Columns and Rows” system
where marks and visual properties are determined by the data
attributes dropped onto each shelf.

Simple Representations as Building Blocks
P1 proposed an idea where the tool determines the visualiza-
tion design based on the involved data attribute types. For
example, Figure 10a (top row) shows two visualizations auto-
matically generated by the tool for two data attributes: “[the
tool] knows it [the city attribute] is categorical, so it makes
up something like this. For the salary, it creates a distribu-
tion [histogram] of the actual values themselves.” [P1]. To
define more complex visualizations, the user can merge simple
representations via drag-and-drop gestures (see Fig. 10b, bot-
tom, showing “the average salary of every city” [P1]). In this
solution, all visualization design decisions are made by the
tool based on the data attributes. The more attributes involved,
the more complex the decisions inferred by the tool. Although
not sketched, P1 mentioned that “there will be ways to sort of
customize this [resulting visualization], ’cause you are gonna
want to customize them in different ways, presumably. But it
[the tool] will give you something for a start. It will give you
something basic to work with and then you can carry that on.”

(a) P3. (b) P4. (c) P12.

Figure 9: Axis-based solutions. The yellow highlighting indicates the
axes’ points where data can be connected.

Chart Galleries
In their designs P3, 4 and 13 proposed a gallery of charts for
the user to select in order to represent data attributes (Fig. 11).
P13 explained that this part of his design was similar to MS
Excel’s charts gallery or Tableau’s “Show Me” pane. The
galleries by P3 and P4 additionally provide access to other
type of designs. For example, dragging a bar chart from P3’s
gallery onto the canvas creates an axis-based widget.

FAMILIES OF DESIGN SOLUTIONS
Our participants’ design ideas presented above and our own
in-house solutions can be grouped into three vis tool design
families: visualization by example, collective proxy objects,
and automated principled design (see Fig. 12). We character-
ize these below alongside their underlying design strategies:
automated iteration, abstraction, and automated choices.

Visualization-by-Example: Automated Iteration
Four of the presented design ideas require the manual specifi-
cation of visual mappings based on a single data instance (e.g.,
one table row) which are then automatically applied to other
data or the entire set (Fig. 12, left). The P6’s “plus button”
(Fig. 6) and P10’s gesture-based mapping propagation idea
represent this visualization-by-example approach, as well as
P13’s, our own description of a Macro Recorder (Fig. 1), and
comparable solutions in commercial tools such as MS Excel.
These solutions directly address the issue of having to repeat-
edly specify the mapping between individual data points and
visual elements as common in bottom-up visualization tools.
Visualization-by-example solutions implement automated it-
eration as a strategy that allows the automatic application of
design decisions reflected by an individual data-driven visual
element to a larger scale. As shown above, implementations
of this strategy differ in terms of how automated iterations
actions are specified and when results become visible. For
example, P6’s “plus button” idea specifies how a data instance
is represented by a mark’s visual properties. In contrast, macro

(a) Individual views. (b) Resulting Visualization.

Figure 10: Merging simple views to create more complex one [P1].



(a) P3. (b) P4. (c) P13.

Figure 11: Sketched chart galleries.

recorder solutions specify mappings as ordered sequences of
actions carried out within a particular temporal interval. Both
solutions apply mappings in bulk, while others, such as P10’s
gesture-based mapping propagation, do this as new individ-
ual mappings steps are specified, showing how the automated
iteration is progressively carried out across the data.

Collective Proxy Objects: Abstraction
Eight sketches implement interface elements (e.g., a widget),
separate from the resulting visualization, to specify visual
mappings between data and visual elements (Fig. 12, middle).
Such proxy objects can take connections carrying individual
values, sets, or data attributes. Modifications to the visual
mapping happen through the proxy object and are propagated
to all the corresponding visualization elements. The design so-
lutions in Figures 3, 7b, and 8 show different implementations
of collective proxy objects. Other examples include Tableau’s
“Marks Card”. P2’s presents a different implementation of this
design approach in which every visualization element is also a
proxy for all other elements within its group (Fig. 7a).
Design solutions in this family are based on abstraction as a
design strategy: a single interface element represents multiple
data items and the visual properties of corresponding marks
while the individual constituents are hidden. Abstraction as a
general term is well discussed in psychology, semiotics and
other areas, but here it best conveys this strategy’s meaning. As
a design strategy to scale constructive visualizations, abstrac-
tion affects access to visual properties and mapping options,
and to the data itself: a high degree of abstraction may allow
visual mappings at an attribute-level, while a low degree will
enable mappings at the level of individual data values.

Automated Principled Design: Automated Choices
Seven of the presented designs support a top-down approach
to visualization construction [44], where visual mappings are
determined and automatically applied by the visualization tool
based on pre-defined principles as specified in its implementa-
tion (Fig. 12, right). For example, in P4’s solution (Fig. 9b)
the designer selects the data attributes and loosely specifies
the visualization type by mapping each to the chart’s axes.
The tool then determines the chart type that fits these data
types. Similarly, in P1’s design, two visualizations are au-
tomatically merged into one, based on the initial data types
involved (Fig. 10). In P13’s solution, the tool offers a variety
of chart types which will fit the attribute types selected by the
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Figure 12: Families of visual mapping strategies. Gray circles represent
the participants’ designs; in-house solutions appear in blue.

designer. Once the designer selects the chart type, the tool
applies the necessary visual mappings. This is similar to how
MS Excel or Tableau’s “Show Me” pane operate. P3’s solution
(Fig. 9a) supports scenarios where the designer chooses a visu-
alization type (e.g., a bar chart), but then maps data attributes
of an unsuitable type (e.g., two continuous attributes): the
tool automatically performs operations to make the data fit the
visualization type (e.g., bin or average data values).
The underlying strategy of this family of designs is that of
automated choices where explicit decisions by the designer
are minimized, and the tool makes choices on: (1) the visu-
alization type (e.g., the type of marks and visual attributes),
(2) the mappings between data and visual variables, (3) the
data or data subset to which to apply mappings (e.g., eliminat-
ing outliers), and (4) the data transformations (e.g., binning a
continuous data attribute to map to a discrete visual variable).
While this strategy leaves many design decisions to the tool,
automated choices can be implemented as mere suggestions
or as configurable by the designer.
The three strategies to scale constructive visualization ap-
proaches to large datasets—automated iteration, abstraction,
and automated choices—are not mutually exclusive, but can
be combined. For example, our “Smart Assistant” solution
(Fig. 2) can be considered as an implementation of the au-
tomated choices strategy, as it makes unprompted decisions
about generalizing visual mappings, but it also implements
the automated iteration strategy as it allows the designer to
explicitly apply visual mappings to additional data points.

AGENCY AND DATA GRANULARITY: A DESIGN SPACE
The families described above are clusters of design solutions
based on strategies to implement constructive visualization
tools that scale to larger datasets. In this section we present a
design space emerging from these strategies which is defined
by two qualitative dimensions: agency and granularity. This
design space summarizes the differences between the proposed
solutions also in relation to previous research and existing
commercial visualization tools.

Agency
Agency refers to who carries out the visualization process: the
tool or the human designer. A visualization tool can make a
variety of decisions throughout the design process, such as
how to transform a continuous data value to map it to a discrete
visual variable ([P3]), selecting the visualization type suitable
for a designer-selected data subset (Fig. 11c [P13]), or even
performing actions on behalf of the designer, such as applying
a mapping repetitively to the full dataset (Fig. 9b [P4]) or just
to the subsequent record (Fig. 6 [P6]).
This dimension is represented as the horizontal axis in the
design space diagram shown in Figure 13. Design solutions
where more agency is placed on the visualization tool, that is,
where the tool is in charge of important mapping decisions
and actions, are located more to the right. To the left on this
axis are purely constructive tools, such as iVoLVER.3

3Note that even a tool like iVoLVER, built from the ground up with
a constructive philosophy, makes some decisions for the designer.
For example, if the designer drops a data value on top of a mark,
iVoLVER will automatically assign it to a default visual property.



Agency is not exclusively linked to the automatic choices
strategy. Abstraction and automated iteration also place some
agency on the tool, as it takes over designer activities.

Granularity
Granularity refers to the level at which the tool allows the
manipulation of both data and visual representations, that is,
what designers can see and manipulate. At the level of fine-
granularity the tool provides access to individual data values
(e.g., a single number in a table cell) and allows for the manip-
ulation of individual marks (e.g., a single bar in a bar chart).
This is how iVoLVER operates. Tools with a coarse granu-
larity operate on groups of values, at an attribute level, or on
groups of attributes (or on groups of marks, or even groups of
small multiples on the visual side). For example, the solutions
of the collective proxy objects family specify the visual map-
pings of many marks through a single widget that takes data
attributes—not individual values—(e.g., Fig. 8a [P2]).
This dimension is represented as the vertical axis in the design
space diagram of Figure 13. Solutions lower in this axis have
a fine granularity (e.g., iVoLVER, which is based on the ma-
nipulation of individual values and marks); solutions higher
up represent data mostly at an attribute level (e.g, the data
column becomes a single element to manipulate in Tableau,
ExPlates [35], Many Eyes [70], and the designs of Fig. 8).
In DataMeadow [14], the visualization process involves ma-
nipulating data attributes, but the entire dataset can also be
represented and manipulated through a single visual element.
Lark [68] supports an even more coarse-grained approach: a
complete dataset is represented as a single visual element that
moves through different transformation steps and the visual-
ization’s components cannot be manipulated directly.

The Design Space: Strategies, Quadrants & Limitations
The set of strategies described in the Families of Design Solu-
tions section can also be described as a collection of design
tropes that allow visualization tool designers to explore and dis-
cuss important options and their corresponding consequences.
For example, adding automatic iteration to a purely construc-
tive tool will place more agency on the tool: now the tool does
something for the designer. Adding abstraction, decreases
the level of granularity (abstraction hides access to the more
atomic elements) and also places agency on the tool: as with
automatic iteration the tool applies operations to all individual
data values and visuals on behalf of the designer. Finally, im-
plementing automated choices shifts the agency balance to the
tool side; adding automated decisions to any tool will move it
closer to the right end of the design space.
Besides the in-house (red) and workshop (blue) design solu-
tions, we have placed a selection of representative existing
visualization tools (green) into this design space defined by
four quadrants Q1–Q4 (see Fig. 13). While not exhaustive
in terms of included tools, the resulting distribution leads to
interesting observations. First, most included tools (green)
gravitate towards the upper part of the space (Q3 and Q4).
Second, the right side of Q1 is populated mostly by solutions
from the workshop (red). Third, Q2, which represents tools
that make many decisions on behalf of the designer but stay
at a coarse-grained granularity level, is barely populated. We
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tools (green), including MS Excel [15], the Google Sheets Explorer fea-
ture [17], and SPSS Chart Builder [33], alongside in-house (blue) and
workshop solutions (red).

believe that there is potential for tools in this category. For
example, a Q2 tool could be a “visualization tutor” that walks
a learner step-by-step through a visual mapping process based
on individual data values.
The design space should be understood as a qualitative tool
as opposed to an exact quantitative metric to specify tool dif-
ferences. Therefore the positioning of tools and solutions in
Figure 13 is open to interpretation and is meant to promote
discussion. Some tools also appear in several places because
they incorporate multiple approaches to creating visualizations
(e.g., Tableau’s “Show Me” pane and “Columns and Rows”).
Similarly, the workshop solutions that we grouped as “collec-
tive proxy objects” span horizontally because they combine
abstraction at different levels of automated choices.

DISCUSSION
In this section we interpret our results, explain the relevance
of our work, discuss its implications, and provide a critical
look at the current landscape of visualization tools.

The Agency-Granularity Design Space
Our design explorations generate a design space based on
agency and granularity that conceptualizes the challenge of
scale in visualization tools. We see this design space as a lens
to look at and discuss existing design solutions and strategies
and to inspire new ones. It brings constructive approaches into
view in relation to more conventional tools, offering designers
a catalog of examples and a deeper understanding of available
solutions. It might also help the visualization community to
identify promising unexplored spaces which we have started to
highlight. We believe that this space complements and further
refines other characterizations of the existing landscape of
visualization tools, such as Tory and Möller’s taxonomy [69]
and Méndez et al.’s top-down vs. bottom-up continuum [44].

Building Better Visualization Tools
The overarching goal of our work is to help create better
visualization tools. This means designing tools that can deal
with datasets that are larger than just a few records (scalability),
that are easy to use but also inspire critical exploration, that
are transparent and understandable, and that support mindful
design, as well as ownership of the results by the designer.



The strategies presented here help deal with the scalability
issue, but not all of them address the other desirable outcomes
listed above. Previous research indicates that tools located
far from the bottom-left corner of the design space, while
increasing scalability, can have a negative impact on other
desirable characteristics [44]. The next step is therefore to find
the “sweet spot” that maximizes the advantages. Our work
supports this goal but further research is needed to investigate
how different levels of agency and granularity affect the use
of visualization tools. Moreover, where the sweet spot is will
depend on the particular task at hand (e.g., new vs. familiar
data), the audience (e.g., expertise), and the usage scenario.

We suspect that, from the strategies described as part of the
families of design solutions, automated iteration could retain
most of the advantages of constructive tools while addressing
the scalability problem. A possible alternative is to design
tools that adapt their interfaces to support different stages of
the design process and expertise depending on the circum-
stances. To a small extent some tools such as MS Excel and
Tableau already address different levels of agency and granu-
larity, but we believe there is much space for improvement.

A Critical Look at the Current Landscape of Vis Tools
Placing a selection of existing visualization tools into our
design space defined by agency and granularity (see Fig. 13)
suggests that much effort has gone into creating tools that
support the rapid design of visualizations through coarse data
granularity and, arguably, little effort from the designer (see
Q3 and Q4). From our own experience, such tools are highly
valuable, and we use them ourselves as part of our design,
research, and teaching practice. However, while supporting
rapid visualization creation in this way (through pre-defined or
AI-inferred design choices) has its place, we argue that there
is a need for more alternatives. Recent work on supporting
more manual constructive visualization processes [30, 45]
and physicalization [29, 31] is already going in this direction,
but there is an urgency for more approaches like this. Data
analysis and required literacy [9] is starting to have an effect
beyond professional scenarios and on our personal lives [26]
including even the youngest members of society [3, 42].

A visualization is not just a means to an end. Reflection on
the data and insight generation take place also during the pro-
cess of constructing the visualization [23, 71]. Supporting
a fast visualization process is therefore not necessarily more
“efficient”, as it may gloss over important details of the data,
patterns, uncertainties, open questions, and opportunities for
exploration and critique. We know from (data) design prac-
tice that active involvement [49], and repetition [5] can foster
creativity and critical thinking. When we consider visualiza-
tion as an active data exploration process, the visualization
tool itself might heavily influence insights and reflections. But
even if we consider visualization as something to be consumed
rather than actively explored and manipulated in a hands-on
way, the tool plays an important role. There is a rhetorical
nature to visualizations [27], where choices in visual repre-
sentation and composition steer our thinking of the presented
topics. Visualization tools influence the design process of
visualizations and, through their implementations, can make

decisions on behalf of the designer. Their power to influence
messages “by design” should not be underestimated. As visu-
alization tool designers we have a responsibility, and we hope
that the design space presented in this paper will fuel a discus-
sion in the community and inspire new and alternative avenues
to visualization tool design. In fact, linking our findings to
philosophy and cognitive science, cognitive embodiment [11],
media studies [41], feminist theory [66] and, most relevantly,
the study of agency and technology [38, 66] may lead to even
more research avenues.

LIMITATIONS AND QUESTIONS FOR FUTURE WORK
Although our conceptualization of the problem, the catalog
of examples and strategies, and the proposed design space
advance our understanding in the area, there is much left to
do, especially characterizing the effects of the different design
strategies on the outcomes that we care about. Perhaps most
interesting for future research is to investigate how different
design strategies impact the visualization design process, in
particular, regarding mindful and critical design, transparency,
and authorship.

We also highlight that the outcomes of our design workshops
should not be interpreted as quantitative evidence of what strat-
egy or type of tool is best understood or comes most “naturally”
to participants. Our workshops were designed to find as many
divergent solutions as possible, that is, to expose the nature
of the design space, rather than identifying a “best” design.
They were not meant to serve as a faithful characterization of
what people desire or understand. Although we explicitly set
out to include people with different backgrounds and levels of
expertise, our sampling is small and not fully representative
of all potential audiences. Additional studies are needed to in-
vestigate approaches of other populations (e.g., professionals).
Our workshops are also limited in other ways: participants are
influenced (1) by the tools they know, and (2) by the tools we
used in our study to contextualize the problem; and (3) they
might need more time to provide a wider variety of designs.

CONCLUSION
We have explored the design space of visualization tools that
could combine the benefits of constructive, “bottom-up” visu-
alization tools, namely transparency and active involvement
in the visualization process, with those of “top-down” ap-
proaches, such as rapid visualization creation and applicability
to large datasets. We analyzed solutions proposed by ourselves
and a group of participants with a range of skill sets and levels
of expertise in visualization. From this data we derived a cat-
alog of solutions, a set of three design strategies (automated
iteration, abstraction, and automated choices) and propose a
conceptualization of the design space of visualization tools
based on agency and granularity. Finally, based on our analy-
sis we provide a critical discussion of the existing landscape of
tools, which we hope will help designers and the community
consider better options in the design of visualization tools.
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